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Abstract

An analytical three-dimensional (3-D) p-version element for the vibration analysis of arbitrary quadrilateral thick plates

is presented. With the additional hierarchical shape functions and analytically integrated element matrices, the computed

accuracy is considerably improved. The computed natural frequencies of cantilever and simply supported square plates

show that the convergence rate of the present element is very fast with respect to the number of hierarchical terms and it

can predict very accurate modes. The element is applicable to the free vibration analysis of quadrilateral, polygonal plates

as well as 3-D space structures. The continuous wavelet transform (CWT) is applied for the identification of damping

ratios. Based on the Rayleigh damping model, the damped vibration response is obtained. A simple experiment is

performed to verify the predicted vibration responses. The results show that the proposed element is also efficient for the

vibration response analysis of plates.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The finite-element method is one of the most widely used methods for the vibration analysis. For the
simulation of actual state of thick plates, three-dimensional (3-D) elements are superior to the ones based on
the classical plate theory [1–3], first-order shear deformation plate theory [4] and high-order shear deformation
plate theory [5].

Either refining the finite-element mesh or increasing the order of the shape functions can improve the
accuracy of finite-element solutions. The former is called h-version and the latter p-version. It is well known
that p convergence is more rapid than h convergence using the same number of degrees of freedom (DOFs) [6].
The existing 3-D p-version elements for the vibration of plates are limited to the analysis of plates with certain
shapes [7,8]. It is best that analytical integration is adopted in p-version elements [1–4,7,8] or the numerical
integration errors will dominate the computed results due to the highly oscillatory nature of the higher-order
polynomials involved so that the monotonic convergence of the predicted natural frequencies cannot be
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

E Young’s modulus
R circumscribing radius
r mass per unit volume
n Poisson’s ratio
o natural frequency
l, O non-dimensional frequency parameters
px, py, pz number of additional hierarchical terms

in three coordinates

x, y, z Cartesian coordinates
x; Z; z coordinates in mapped cube
xi; yi; zi values of x, y and z coordinates at the

eight corner nodes
J Jacobian matrix
u vector of u, v and w

Ke;Me stiffness matrix and mass matrix of the
element
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guaranteed [9]. This paper overcomes the problem by analytical integration and presents a new 3-D
hierarchical arbitrary quadrilateral element for the vibration analysis of plates.

Some numerical examples including the vibration of square, quadrilateral, polygonal plates and a 3-D space
structure are studied in this paper. Comparison with the available methods shows that the present element
predicts natural modes with higher accuracy and its convergence rate is very fast with respect to the number of
hierarchical terms. The vibration responses computed by the present element are validated by an experiment.
The element can be extended to study tapered plates without difficulty.
2. Element formulation

2.1. Stiffness and mass matrices

The coordinates system for a 3-D quadrilateral uniform plate element is shown in Fig 1. Fig 1(a) depicts the
Cartesian coordinates of the element, and Fig. 1(b) describes the mapped x� Z� z cube region. The Jacobian
matrix is defined in terms of the Cartesian coordinates at the eight corner nodes as

J ¼

qx

qx
qy

qx
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Fig. 1. The 3-D element coordinate transformation.
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where a ¼ 0:25ð�x2 þ x3 þ x4Þ, b ¼ 0:25ð�x2 � x3 þ x4Þ, c ¼ 0:25ðx2 � x3 þ x4Þ, d ¼ 0:25ð�y2 þ y3 þ y4Þ,
e ¼ 0:25ð�y2 � y3 þ y4Þ, f ¼ 0:25ðy2 � y3 þ y4Þ and t ¼ z1. Then the determinant of Jacobian is
jJj ¼ ðt=2Þ½ðae� bdÞxþ ðbf � ceÞZþ af � cd�, and

J�1 ¼
1

jJj

ðf þ exÞt=2 �ðd þ eZÞt=2 0

�ðcþ bxÞt=2 �ðaþ bZÞt=2 0

0 0 2jJj=t

2
64

3
75. (2)

The displacements u, v and w in the three directions are interpolated by

u ¼

u

v

w

8><
>:

9>=
>; ¼ ½N1;N2; . . . ;Ni; . . . ;Nðpxþ2Þðpyþ2Þðpzþ2Þ� ¼ Nde, (3)

where de is the vector of the generalized DOFs; parameters px, py and pz, respectively, are the numbers of
additional hierarchical terms employed in each coordinate axis; and

Ni ¼

f jðxÞf kðZÞf lðzÞ 0 0

0 f jðxÞf kðZÞf lðzÞ 0

0 0 f jðxÞf kðZÞf lðzÞ

2
64

3
75, (4)

with f jðxÞ, f kðZÞ and f lðzÞ being the Legendre orthogonal polynomials [1], j ¼ 1�px+2, k ¼ 1�py+2 and
l ¼ 1�pz+2. The eight shape functions f jðxÞf kðZÞf lðzÞ (j, k, l ¼ 1 or 2) are used in the conventional linear finite
elements (LFE). The additional shape functions in terms of the Legendre orthogonal polynomials lead to zero
displacements at each corner node. With these enriching functions, the additional DOFs appear along the 12
edges, on the six surfaces and in the interior of the element. The DOFs of the eight corner nodes are
represented by j, k, lp2; the DOFs along the 12 edges are represented if one of j, k, l42; the DOFs on the six
surfaces are represented if two of j, k, l42; the DOFs in the interior are represented if all of j, k, l42.

The substitution of Eq. (4) into the strain equations gives

e ¼

q=qx 0 0

0 q=qy 0

0 0 q=qz

q=qy q=qx 0

0 q=qz q=qy

q=qz 0 q=qx

2
6666666664

3
7777777775
u ¼ Bde. (5)

In view of the coordinate mapping, the partial derivatives in B must be replaced by

q=qx

q=qy

q=qz

8><
>:

9>=
>; ¼ J�1

q=qx

q=qZ

q=qz

8><
>:

9>=
>;. (6)

For harmonic vibration problems, the stiffness matrix and the mass matrix of the element are obtained by
applying the principle of minimum potential energy and Hamilton’s principle respectively as

Ke ¼

Z
V

BTDBdV ¼

Z 1

�1

Z 1

�1

Z 1

�1

BTDBjJjdxdZdz, (7a)

Me ¼

Z
V

rNTNdV ¼

Z 1

�1

Z 1

�1

Z 1

�1

rNTNjJjdxdZdz, (7b)

where D is the 3-D modulus matrix and r is the density. The coefficients of the stiffness matrix and the mass
matrix are obtained in a straightforward manner and they are given in Appendix A. In the assemblage of
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elements, since there are DOFs along every edge and surface of the p-version element, the direction of the
edges and surfaces between adjacent elements should be in the same orientation to ensure the continuity along
the edges and surfaces. Then, for the eigenvalue problem of free vibration of the structure one has

ðK� o2MÞd ¼ 0, (8)

where K, M and d, respectively, are the global stiffness matrix, global mass matrix and the eigenvector of the
structure, and o is the natural frequency of the structure. For engineering applications when only first several
natural frequencies are needed, the internal DOFs and some DOFs not adjacent to other elements can be
condensed by the exact dynamic condensation before assembling the elements [10].

2.2. Integration implementation

As mentioned above, it is well known that numerical integration errors influence the results computed by p-
version elements and the problem becomes obvious for highly oscillating shape functions such as the higher-
order Legendre orthogonal polynomials. Numerical integration softens the stiffness of the elements in general
and that the monotonic convergence of the predicted natural frequencies cannot be guaranteed [9]. Numerical
quadrature should only be used to predict several lowest frequencies with a few hierarchical terms [11]. The
problems will be eliminated if the matrices of the element are integrated analytically. Based on this viewpoint,
the p-version elements with analytical integration are always recommended. For the present element, as shown
in Appendix A, the problem of integrating the coefficients of stiffness and mass matrices reduces to the
integration of xiZj=ðAxþ BZþ CÞ with A, B and C being constants. Using some commercial packages such as
MAPLE, MATLAB, MATCAD and MATHEMATICA, the exact formula of the above integration can be
obtained. For example

Z 1

�1

Z 1

�1

xZ2=ðAxþ BZþ CÞdx dZ ¼
1

12A2B3
f12AB3 � 4ABC2 � 12A3B

� logðAþ Bþ CÞ½�3A4 þ 3B4 þ C4 � 6A2C2 � 8A3C þ 4B3C�

� logð�Aþ Bþ CÞ½3A4 � 3B4 � C4 þ 6A2C2 � 8A3C � 4B3C�

� logðA� Bþ CÞ½3A4 � 3B4 � C4 þ 6A2C2 þ 8A3C þ 4B3C�

� logð�A� Bþ CÞ½�3A4 þ 3B4 þ C4 � 6A2C2 þ 8A3C � 4B3C�g. ð9Þ

To use these integration formulae with different values of i and j conveniently, one can make them into a
function for formulating the stiffness and mass matrices of the element. By this way, the coefficients of the
stiffness matrix and the mass matrix are readily obtained in a straightforward manner.

3. Numerical results

Some combinations of free (F), simply supported (S) and clamped (C) boundary conditions are considered
in this paper. All DOFs at the free surface and the clamped surface are unconstrain and constrain,
respectively. The simply supported condition presumes unconstrain DOFs at the side surface and zero
transverse and tangential displacements at the common edge between the side surface and the nether surface of
the plate. Unless stated otherwise, the Poisson’s ratio n is taken to be 0.3. To simplify the computation and
presentation, the numbers of the additional hierarchical terms in the three dimensions are taken as a common
value, that is, px ¼ py ¼ pz ¼ p.

3.1. Vibration analysis of square plates

In order to examine the accuracy and convergence rate of solutions computed by the 3-D hierarchical finite-
element method (HFEM) for free vibration of thick plates, a cantilever square plate with t/a ¼ 0.5 is meshed
by one square (mesh I), four squares (mesh II) and four quadrilaterals (mesh III) present 3-D p-version
elements, respectively (see Fig. 2). The frequency parameters l ¼ ðoa2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rt=D0

p
of the first eight modes
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Fig. 2. Meshes of square plates ((a) mesh I; (b) mesh II; (c) mesh III).

Table 1

Frequency parameters l ¼ ðoa2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rt=D0

p
for a cantilever square plate (t/a ¼ 0.5)

Method DOFs Mode number

1 2 3 4 5 6 7 8

Mesh I p ¼ 1 54 0.3255 0.4775 0.5783 1.1058 1.2924 1.3005 1.7993 1.8121

p ¼ 2 144 0.3027 0.4511 0.5331 1.0741 1.1768 1.2110 1.5526 1.6490

p ¼ 3 300 0.2997 0.4476 0.5292 1.0690 1.1151 1.1901 1.4898 1.5294

p ¼ 4 540 0.2985 0.4460 0.5271 1.0675 1.1105 1.1872 1.4816 1.5241

p ¼ 5 882 0.2980 0.4455 0.5267 1.0667 1.1095 1.1868 1.4805 1.5225

p ¼ 6 1344 0.2977 0.4451 0.5264 1.0663 1.1090 1.1865 1.4798 1.5224

Mesh II p ¼ 1 180 0.3073 0.4524 0.5495 1.0751 1.1806 1.2081 1.5731 1.6207

p ¼ 2 504 0.2993 0.4468 0.5285 1.0684 1.1150 1.1885 1.4879 1.5275

p ¼ 3 1080 0.2982 0.4455 0.5271 1.0668 1.1108 1.1868 1.4818 1.5231

p ¼ 4 1980 0.2973 0.4445 0.5263 1.0654 1.1087 1.1863 1.4797 1.5223

Mesh III p ¼ 1 180 0.3074 0.4523 0.5496 1.0749 1.1811 1.2095 1.5768 1.6225

p ¼ 2 504 0.2993 0.4468 0.5285 1.0684 1.1153 1.1887 1.4886 1.5280

p ¼ 3 1080 0.2982 0.4455 0.5271 1.0669 1.1108 1.1868 1.4819 1.5231

p ¼ 4 1980 0.2977 0.4451 0.5265 1.0663 1.1091 1.1865 1.4799 1.5224

LFE 6� 6� 3 504 0.3107 0.4542 0.5442 1.0777 1.1863 1.2207 1.5695 1.6222

LFE 8� 8� 4 1080 0.3056 0.4507 0.5373 1.0733 1.1553 1.2065 1.5338 1.5807

LFE 10� 10� 5 1980 0.3030 0.4489 0.5338 1.0710 1.1397 1.1996 1.5158 1.5604

LFE 20� 20� 10 13,860 0.2990 0.4460 0.5283 1.0674 1.1170 1.1898 1.4893 1.5322

Leissa et al. [12] 0.2996 0.4469 0.5279 1.0689 1.1144 1.1882 1.4863 1.5253

Liew et al. [13] 0.2976 0.4449 0.5263 1.0687 1.1087 1.1863 1.4795 1.5222
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with D0 ¼ Et3=½12ð1� n2Þ� are compared with those presented by Leissa et al. [12] and Liew et al. [13] in
Table 1. It can be found that very fast monotonic convergence is possible with the increasing number of
hierarchical terms, and the present solutions are in good agreement with the existing results especially those of
Liew et al. [13]. Comparison with the solutions of the LFE is also carried out in the table. The present element
produces much more accurate natural frequencies than the LFE for the same number of DOFs. With one
present square hierarchical element, the first eight frequencies with only 882 DOFs (p ¼ 5) are more accurate
than those of LFE with 13860 DOFs, that is to say, it needs only 6.4% DOFs compared with the LFE to
obtain same accurate solutions!

Many published numerical cases of simply supported (S–S–S–S) square plates were carried out based on the
3-D elastic theory [12,14,15,16]. To compare with those available solutions, the S–S–S–S square plates meshed
by four present 3-D hierarchical elements (see Fig. 2(c)) are analyzed. The frequency parameters l of the first
eight modes are listed in Table 2 along with the existing 3-D solutions. It is noted that there is an obvious
typographical error in Ref. [16]. The value of the first mode for t/b ¼ 0.2 was given as 1.7558 when it should
be 1.7758. From the table, one can observe that the present solutions are in excellent agreement with the other
3-D results.
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Table 2

Frequency parameters l ¼ ðoa2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rt=D0

p
for simply supported square plates

t/a Method Mode number

1 2 3 4 5 6 7 8

0.1 3-D DQ solutios [15] 1.9342 4.6250 4.6250 6.5234 6.5234 7.1064 8.6932 8.6932

3-D Ritz solutios [12] 1.9342 4.6222 4.6222 6.5234 6.5234 7.1030 8.6617 8.6617

3-D Ritz solutios [16] 1.9342 4.6222 4.6222 6.5234 6.5234 7.1030 8.6617 8.6617

Present FE solutions 1.9342 4.6225 4.6225 6.5234 6.5234 7.1035 8.6687 8.6687

0.2 3-D DQ solutios [15] 1.7758 3.2617 3.2617 3.8999 3.8999 4.6127 5.6533 6.5236

3-D Ritz solutios [12] 1.7758 3.2617 3.2617 3.8991 3.8991 4.6127 5.6524 6.5234

3-D Ritz solutios [16] 1.7758 3.2617 3.2617 3.8991 3.8991 4.6128 5.6524 6.5234

Present FE solutions 1.7758 3.2617 3.2617 3.8992 3.8992 4.6127 5.6526 6.5235

0.5 3-D Ritz solutios [12] 1.2590 1.3047 1.3047 1.8451 2.3312 2.3312 2.6094 2.6094

3-D Ritz solutios [16] 1.2590 1.3047 1.3047 1.8451 2.3312 2.3312 2.6094 2.6094

Present FE solutions 1.2590 1.3047 1.3047 1.8451 2.3312 2.3312 2.6094 2.6094

b c

a

α β

Fig. 3. Mesh of cantilever quadrilateral plate.
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3.2. Vibration analysis of cantilever quadrilateral plates

Four present 3-D hierarchical elements are used to analyze the cantilever quadrilateral plates as shown in
Fig. 3. One can vary the parameters a, b, a, b and c to change the shape of the plate. With various values of a,
b, b/a, c/a and t/a, the frequency parameters l of the first eight modes are shown in Table 3. Since the present
element can produce very accurate natural frequencies as validated above, the results in Table 3 can be served
as the benchmark data for the other numerical methods.

3.3. Vibration analysis of fully clamped regular polygonal plates

Most studies for the free vibration analysis of polygonal plates are based on the point matching method, the
collocation method, the Ritz method and so on. The considerable accurate natural frequencies of the
polygonal moderately thick plates can be also obtained using the HFEM just by assembling the quadrilateral
elements based on the Mindlin plate theory [4]. The present 3-D element is used to analyze the polygonal thick
plates in this paper. For the simplicity of computation, the polygonal plates with only fully clamped boundary
conditions are considered here. The p-version meshes of the triangular, square, pentagonal and hexagonal
plates are shown in Fig. 4. The same circumscribing radius of these polygons is R. With different ratios of t/R,
their frequency parameters O ¼ ð4oR2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rt=D0

p
of the first eight modes are presented in Table 4. A

common value of the additional hierarchical terms p ¼ 4 is used in the computation. From Table 4, it can be
found that the solutions of the present hierarchical element are in excellent agreement with the 3-D results



ARTICLE IN PRESS

Table 3

Frequency parameters l ¼ ðoa2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rt=D0

p
for cantilever quadrilateral plates

t/a a (deg.) b (deg.) b/a c/a Mode number

1 2 3 4 5 6 7 8

0.1 60 60 0.866 0.866 0.9533 3.2142 4.0196 4.7811 7.8541 8.3785 9.0683 9.4938

60 120 0.866 0.866 0.5279 1.0857 2.7336 2.7766 3.1098 4.4311 5.2254 5.7016

90 60 1 0.866 0.5047 1.5619 2.6124 2.9364 4.0188 5.7662 6.2819 6.6147

90 120 1 0.866 0.3930 0.6573 1.5667 2.2345 2.3944 2.9513 3.4564 4.3359

0.2 60 60 0.866 0.866 0.8954 2.3933 2.6212 3.2776 4.5398 4.9062 5.7827 6.2625

60 120 0.866 0.866 0.5050 0.9783 1.3908 2.3824 2.5283 2.8523 3.5691 3.6653

90 60 1 0.866 0.4866 1.3730 1.4701 2.2147 3.1429 3.3318 3.6388 4.5324

90 120 1 0.866 0.3809 0.6052 1.1191 1.4172 2.0561 2.4374 2.5967 2.8847

0.5 60 60 0.866 0.866 0.6893 0.9607 1.3428 1.8174 1.8185 1.9581 2.5449 3.1677

60 120 0.866 0.866 0.4111 0.5590 0.6781 1.1426 1.3219 1.4687 1.5502 1.8908

90 60 1 0.866 0.4079 0.5904 0.8466 1.2586 1.2904 1.4560 1.9119 2.2521

90 120 1 0.866 0.3262 0.4471 0.4497 1.0047 1.0426 1.1548 1.2207 1.3700

t

Fig. 4. Meshes of regular polygonal plates.
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computed by the Ritz method [17]. Refs. [4,18] are based on the Mindlin plate theory, and their solutions are a
little on the lower side than the 3-D ones of the present method and the Ritz method [17]. It should be noted
that the in-plane vibration modes are not listed in Refs. [4,18].

3.4. Free vibration of a space structure

A space concrete structure is shown in Fig. 5. The structure is analyzed by the present hierarchical element
and the LFE with different meshes (see Fig. 5(c) and (d)), respectively. The following parameters are used in
the computation: the Young’s modulus E ¼ 30� 109 Pa, the density r ¼ 2500 kg/m3 and the Possion’s ratio
n ¼ 0.3. For the coarse mesh with different hierarchical terms of the present element and the fine mesh of the
LFE, their lowest eight natural frequencies are listed in Table 5. It also can be found that the frequencies
predicted by the present element are more accurate than those of the LFE. This numerical case validates the
proposed hierarchical element for the 3-D vibration analysis of space structures.

4. Experimental study

An experiment is set to study the free decaying vibration responses of a cantilever moderately thick plate.
The tested acrylic plate and its numerical model are depicted in Fig. 6(a) and (b), respectively. Two
accelerometers are installed at A and C. In the numerical analysis, each accelerometer is modeled as a mass
(0.035 kg) attached at A or C. Other parameters of the plate are: the thickness of the plate t ¼ 0.01m, Young’s
modulus E ¼ 3.7� 109 Pa, the density r ¼ 1400 kg/m3 and Possion’s ratio n ¼ 0.33. There are 40 hierarchical
elements used in the analysis (see Fig. 6(b)).
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Table 4

Frequency parameters O ¼ ð4oR2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rt=D0

p
for fully clamped polygonal plates

Polygon t/(2R) Method Mode number

1 2 3 4 5 6 7 8

Triangle
ffiffiffi
3
p

=20 Present 10.70 18.26 18.26 26.14 26.40 26.40 27.28 27.28

Ref. [4] 10.53 17.93 17.93 25.55 — — 26.70 26.70

Ref. [18] 10.51 17.87 17.87 25.48 — — 26.61 26.61ffiffiffi
3
p

=10 Present 7.526 11.88 11.88 13.22 13.22 16.33 16.40 16.88

Ref. [4] 7.321 11.52 11.52 — — — 15.78 16.31ffiffiffi
3
p

=4 Present 3.644 5.296 5.296 5.420 5.420 6.443 6.443 6.501

Square
ffiffiffi
2
p

=20 Present 6.677 12.75 12.75 17.89 21.13 21.33 25.08 25.08

Ref. [17] 6.643 12.69 12.69 17.81 21.00 21.20 25.04 25.04

Ref. [4] 6.591 12.57 12.57 17.62 20.76 20.96 — —

Ref. [18] 6.591 12.57 12.57 17.62 20.76 20.96 — —ffiffiffi
2
p

=10 Present 5.469 9.568 9.568 12.56 12.56 12.86 14.68 14.88

Ref. [18] 5.452 9.545 9.545 12.55 12.55 12.84 14.65 14.85

Ref. [4] 5.375 9.381 9.381 — — 12.60 14.35 14.55ffiffiffi
2
p

=4 Present 3.104 4.884 4.884 5.034 5.034 5.953 6.391 7.162

Ref. [17] 3.099 4.879 4.879 5.030 5.030 5.953 6.385 7.155

Pentagon 0.1 Present 5.081 9.552 9.552 14.20 14.20 15.89 16.07 16.07

Ref. [4] 5.014 9.410 9.410 13.97 13.97 15.61 — —

0.2 Present 3.928 6.687 6.687 8.053 8.053 9.397 9.418 9.418

0.5 Present 2.058 3.202 3.202 3.225 3.225 3.76 4.211 4.211

Hexagon 0.1 Present 4.608 8.747 8.747 13.16 13.16 14.71 15.29 15.29

Ref. [4] 4.550 8.624 8.624 12.95 12.95 14.46 — —

0.2 Present 3.628 6.232 6.232 7.663 7.663 8.846 8.846 8.888

0.5 Present 1.936 3.023 3.023 3.069 3.069 3.556 4.086 4.086
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In order to compare the free decaying vibration responses computed by the present hierarchical element
with the experimental data, the damping ratios of the structure should be identified firstly. The Rayleigh
damping [19] is adopted in the finite-element model and the damping ratios of the first two modes are
identified using the continuous wavelet transform (CWT) as follows [20–22].

Instead of a linear free MDOF system with N DOFs, N uncoupled equations similar to a single DOF system
are obtained

mi €xiðtÞ þ ci _xiðtÞ þ kixiðtÞ ¼ 0. (10)

The impulse response of each uncoupled system can be given in general form as

xiðtÞ ¼ Ai0e
�xioi t cosð

ffiffiffiffiffiffiffiffiffiffiffiffi
1� xi

p
oitþ ciÞ, (11)

where oi, xi, Ai and ci are the natural frequency, damping ratio, residue magnitude and phase lag of the ith
mode. If the damping is small, the impulse response can be considered asymptotic and the amplitude of the
signal is

AiðtÞ ¼ Ai0e
�xioi t. (12)

Substituting Eqs. (12) into Eq. (11), developing the amplitude using Taylor’s series and neglecting terms of the
order of one and superior to one, the wavelet transform of the damped signal can be rewritten as

ðWf Þða; bÞ � AiðbÞC�ðaodiÞe
jjiðbÞ, (13)

where the damped frequencies odi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� xi

p
oi. The modulus of Eq. (13) is given by

jðWf Þða; bÞj � AiðbÞjC�ðaodiÞj. (14)
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Fig. 5. Geometric size and meshes for the free vibration of a space structure ((a) top view of the structure; (b) front view of the structure;

(c) p-mesh with present 3-D hierarchical element; (d) h-mesh with linear finite element).

Table 5

Natural frequencies o (Hz) for the space structure

Method DOFs Mode number

1 2 3 4 5 6 7 8

Present (p ¼ 1) 576 7.170 7.170 9.232 30.70 30.70 56.18 62.13 128.7

Present (p ¼ 2) 1584 7.104 7.104 8.494 29.11 29.11 53.78 60.49 121.7

Present (p ¼ 3) 3360 7.086 7.086 8.475 28.77 28.77 53.30 59.97 121.1

LFEM 8163 7.259 7.259 8.545 29.82 29.82 55.62 61.74 127.3
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For a given value of dilation a0, from Eqs. (11) and (14), applying logarithm to Eq. (14) gives

ln jðWf Þða0; bÞj � �xioibþ ln½Ai0jC�ð�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� xi

p
joia0Þj�. (15)

The damping ratio of the ith mode is obtained from Eq. (15). With the Rayleigh damping matrix C from the
damping ratios of the first two modes [19], the free damped vibration equation is given by

M €VðtÞ þ C _VðtÞ þ KVðtÞ ¼ f0g, (16)

where VðtÞ is the vectors of displacement.
A string is used to generate a 0.01m transverse displacement at A and then cut it off to achieve the free decay

responses at A and C. The free decay acceleration signal at A is low-pass filtered with a 100Hz cutoff, and its
power spectral density is shown in Fig. 7. Performing the complex Morlet wavelet transform (command cmor1-1

in the MATLAB) to the free decay acceleration signal, the contour plot of the modulus expressing the
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time–frequency characteristics of the signal is presented in Fig. 8. In order to increase the visibility of the picture,
if the modulus of the wavelet transform is negative, the amplitude value is not represented on the plot. The first
two modes of the structure are shown in the plot, and response of the second mode decays rapidly.
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With band-pass filtered from 5 to 20 and from 35 to 55Hz, respectively, the free decay responses of the first
two modes at A are shown in Fig. 9(a) and (b). Also, performing CWT with command cmor1-1 to both signals,
the peak envelopes of the transformed signals are shown in Fig. 10. By linear least square, the damped
frequencies can be read from Fig. 10(a) and the damping ratios of the first two modes are obtained by
calculating the slopes of the two lines in Fig. 10(b). More details about the identification of vibration
parameters can refer to Refs. [20–22]. These results along with the natural frequencies computed by the present
hierarchical element are presented in Table 6.

With the identified damping ratios of the first two modes, the free decay acceleration responses of the
structure can be computed by Eq. (16) and the Newmark linear acceleration method [19]. Compared with the
experimental data, the free decay acceleration responses at A and C are shown in Fig. 11. From the pictures, it
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Fig. 9. Impulse responses of the first two modes ((a) first mode; (b) second mode).
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Table 6

Natural frequencies (Hz) and damping ratios of the cantilever acrylic plate

Method Natural frequency (Hz) Damping ratio (%)

1 2 3 1 2

p-version FEM (p ¼ 1) 10.01 44.27 63.45 — —

p-version FEM (p ¼ 2) 9.94 43.82 62.62 — —

Fast Fourier transform (FFT) 9.77 43.75 62.30 — —

Continuous wavelet transform (CWT) 9.67 42.55 — 0.708 0.923
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computed by the present element; dashed line: experimental signals).
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can be found that the signals computed by the present element are in good agreement with the experimental
ones. It should be noted that there are some high-frequency noises in the experimental data, and only one
hierarchical term is used in the analysis. If the influence of noise is eliminated and more hierarchical terms are
used, the present solutions will be in better agreement with the experiment.

5. Conclusions

A 3-D p-version arbitrary quadrilateral plate element is presented in this paper. It can be applied to the
vibration analysis of plates with complicated shapes. With the same number of DOFs, the present element
produces much higher accurate modes than the linear 3-D finite element.

Two numerical examples, a cantilever square plate with different hierarchical terms and simply supported
square plates with different thickness, are used to study the convergence rate. The results are compared with
available solutions including those of other 3-D methods. The results show that the convergence rate of the
proposed element is very fast with respect to the number of hierarchical terms. Its predicted natural
frequencies are in excellent agreement with those of 3-D differential quadrature method and 3-D Ritz method.
To show the versatility of the element, the quadrilateral and polygonal plates with different thickness are also
analyzed. Furthermore, the numerical case of a space structure shows that the present element is efficient for
the vibration analysis of 3-D space structures. A simple experiment is installed to study the proposed element
for the analysis of free vibration responses. The CWT is used to determine the damped frequencies and
damping ratios. The responses computed by the present element, based on the Rayleigh damping model and
Newmark linear acceleration method, are in good agreement with the experimental ones.
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Appendix A. Coefficients of stiffness and mass matrices

If m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)}�2 and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)}�2,

Ke
m;n ¼

Z 1

�1

Z 1

�1

½ðF2 þ n2C2Þt4W 1010Wzz00 þ ð�FD� n2CAÞt4W 1001Wzz00 þ ð�DF � n2ACÞt4

�W 0110Wzz00 þ ðD
2 þ n2A2Þt4W 0101Wzz00 þ 16jJj2n2W 0000Wzz11�=ð4t2jJjÞdxdZ;



ARTICLE IN PRESS
B. Zhu et al. / Journal of Sound and Vibration 303 (2007) 171–184 183
else if m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)}�2 and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)}�1,

Ke
m;n ¼

Z 1

�1

Z 1

�1

½�ðn1CF þ n2CF ÞW 1010Wzz00 þ ðn1FAþ n2CDÞW 1001Wzz00

þ ðn1DC þ n2AF ÞW 0110Wzz00 � ðn1ADþ n2ADÞW 0101Wzz00�t
2=ð4jJjÞdxdZ;

else if m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)}�2 and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)},

Ke
m;n ¼

Z 1

�1

Z 1

�1

½n1FW 1000Wzz01 � n1DW 0100Wzz01 þ n2FW 0010Wzz10

� n2DW 0001Wzz10�dxdZ;

else if m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)}�1 and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)}�2,

Ke
m;n ¼

Z 1

�1

Z 1

�1

½�ðn1CF þ n2CF ÞW 1010Wzz00 þ ðn1CDþ n2FAÞW 1001Wzz00

þ ðn1AF þ n2DCÞW 0110Wzz00 � ðn1ADþ n2ADÞW 0101Wzz00�t2=ð4jJjÞdxdZ;

else if m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)}�1 and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)}�1,

Ke
m;n ¼

Z 1

�1

Z 1

�1

½ðC2 þ n2F2Þt4W 1010Wzz00 þ ð�CA� n2FDÞt4W 1001Wzz00 þ ð�AC � n2DF Þt4

�W 0110Wzz00 þ ðA
2 þ n2D2Þt4W 0101Wzz00 þ 16jJj2n2W 0000Wzz11�=ð4t2jJjÞdxdZ;

else if m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)}�1 and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)},

Ke
m;n ¼

Z 1

�1

Z 1

�1

½�n1CW 1000Wzz01 þ n1AW 0100Wzz01 � n2CW 0010Wzz10

þ n2AW 0001Wzz10�dx dZ;

else if m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)} and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)}�2,

Ke
m;n ¼

Z 1

�1

Z 1

�1

½n1FW 0010Wzz10 � n1DW 0001Wzz10 þ n2FW 1000Wzz01

�n2DW 0100Wzz01�dx dZ;

else if m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)} and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)}�1,

Ke
m;n ¼

Z 1

�1

Z 1

�1

½�n1CW 0010Wzz10 þ n1AW 0001Wzz10 � n2CW 1000Wzz01

þ n2AW 0100Wzz01�dx dZ;

else if m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)} and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)},

Ke
m;n ¼

Z 1

�1

Z 1

�1

½16jJj2W 0000Wzz11 þ ðC
2 þ F 2Þt4n2W 1010Wzz00 � ðCAþ FDÞt4n2W 1001Wzz00

þ ð�AC �DF Þt4n2W 0110Wzz00 þ ðA
2 þD2Þt4n2W 0101Wzz00�=ð4t2jJjÞdxdZ.

If m ¼ 3{l+[(j�1)(px+2)+k�1] (py+2)}�2 and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)}�2,
or 3{l+[(j�1)(px+2)+k�1] (py+2)}�1 and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)}�1,
or 3{l+[(j�1)(px+2)+k�1] (py+2)} and n ¼ 3{t+[(r�1)(px+2)+s�1] (py+2)},

Me
m;n ¼

Z 1

�1

Z 1

�1

½jJjW 0000Wzz00�dxdZ;

else then

Me
m;n ¼ 0.
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Here A ¼ aþ bZ, C ¼ cþ bx, D ¼ d þ eZ, F ¼ f þ ex, n1 ¼ n/(1�n) and n2 ¼ (1�2n)/[2(1�n)] with n being the
Poisson’s ratio and

W abwd ¼ f a
j ðxÞf

b
kðZÞf

w
r ðxÞf

d
s ðZÞ,

Wzzab ¼ f a
l ðzÞf

b
t ðzÞ,

with j; r ¼ 1; 2; . . . ; px þ 2; k; s ¼ 1; 2; . . . ; py þ 2; l; t ¼ 1; 2; . . . ; pz þ 2; and the superscripts a, b, w, d (a, b, w,
d ¼ 0, 1) denote the order of the derivatives.
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